1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Состав и механизм действия

Механизмы действия ЛС

Экскреция (выведение) лекарственных средств

Конечным этапом фармакокинетических процессов является экскреция ЛС и/или их метаболитов через различные выделительные органы (почки, печень, кишечник, лёгкие, кожу, слюнные, сальные, потовые, слёзные, молочные железы). Основным органом экскреции являются почки.

Механизмы экскреции ЛС в почках:

1. клубочковая фильтрация – выделение воды и низкомолекулярных ЛС (молекулярная масса ниже 50000) путём пассивной диффузии; процесс зависит от состояния микроциркуляции в почках;

2. канальцевая экскреция – выделение ЛС в проксимальных канальцах путём активного транспорта;

3. канальцевая реабсорбция – обратное всасывание ЛС в дистальных канальцах путём пассивной диффузии.

Экскреция ЛС печенью – выделение ЛС с желчью в кишечник, при этом часть ЛС выводится с калом, а часть ЛС после воздействия ферментов кишечника обратно всасывается в кровь (печёночно-кишечная циркуляция).

Экскреция ЛС лёгкими — выведение в основном газообразных ЛС и этилового спирта.

Факторы, изменяющие эффект лекарственных средств:

1. Физиологические факторы:

— возраст (дети и пожилые больные);

— пол (женщины, особенно во время беременности, могут быть более чувствительны к ЛС);

— хронестезия — циклические изменения чувствительности биологических систем организма к ЛС (циркадианные изменения — в течение суток; циркатригентантные — в течение месяца; цирканнуальные — в течение года);

— хронергия — изменения биологических системных эффектов (например, эффективности препаратов), подчиняющиеся определённому ритму; учёт хронергии позволяет определить время достижения оптимального эффекта (например, гормональных препаратов) при минимальном риске возникновения побочных явлений.

2. Особенности индивидуальной фармакокинетики ЛС.

3. Время введения ЛС в зависимости от приёма и характера пищи, влияния факторов внешней среды.

4. Генетические факторы, влияющие на биологическую усвояемость и эффективность ЛС.

5. Лекарственное взаимодействие при приёме нескольких препаратов.

6. Сопутствующие патологические изменения в органах (печень, почки, ЖКТ).

7. Чувствительность больного к ЛС.

8. Приверженность больного лечению.

Фармакодинамика– основной раздел фармакологии, изучающий особенности действия ЛС на организм человека.В рамкахклинической фармакодинамики изучаются механизмы действия ЛС, принципы их дозирования, избирательность действия ЛС и т.д.

Виды действия ЛС на организм:

1. В зависимости от места приложения ЛС:

1. системное (генерализованное) действие – адреналин, атропин и др.;

2. органоспецифическое действие – слабительные, мочегонные и др.

2. В зависимости от способа применения и особенностей всасывания в кровь:

1. местное действие (лидокаин аэрозоль);

2. резорбтивное действие (лидокаин в/м):

— прямое действие (теофиллин);

— опосредованное, непрямое (сальбутамол); как вариант – рефлекторное действие (горчичники).

3. В зависимости от характера изменений в органах и тканях:

1. обратимое действие (большинство лекарств);

2. необратимое действие (цитостатики).

4. В зависимости от оказываемого эффекта:

1. главное действие (терапевтический эффект);

2. побочное действие.

Эти действия в зависимости от цели терапии могут меняться местами.

5. В зависимости от широты спектра фармакологического эффекта:

1. неспецифическое действие (витамины, глюкоза, адаптогены);

2. специфическое действие:

Действие лекарственных веществ на организм:

Основные характеристики действия ЛС:

3. время действия препарата:

латентный период действия – это время с момента приёма ЛС до начала его терапевтического действия (короткий период – допамин, лидокаин, нитроглицерин; длительный период – спиронолактон, кризанол и др.);

период максимального действия – время, в течение которого в максимальной мере проявляется терапевтический эффект;

время удержания эффекта – показатель, определяющий частоту и длительность приёма препарата;

время последействия ЛС – это время после прекращения приёма ЛС, в течение которого в организме сохраняются функциональные изменения, вызванные действием препарата;

4. быстрота наступления эффекта, его сила и продолжительность (зависит от скорости введения, количества ЛС и функционального состояния организма или органов).

Основные механизмы действия ЛС:

1. прямое химическое (цитотоксическое) воздействие – непосредственное взаимодействие ЛС с внутриклеточными молекулами или ионами, приводящее чаще к нарушению функции клеток (антибиотики, противовирусные препараты, цитостатики, антациды);

2. физико-химическое действие на мембраны клеток – изменение или блокирование электрофизиологической активности мембран нервных и мышечных клеток (антиаритмические и противосудорожные препараты, местные анестетики, средства для наркоза);

3. действие на специфические ферменты – влияние ЛС на активность различных ферментов (индукторы ферментов – фенобарбитал; ингибиторы ферментов — антихолинэстеразные препараты: прозерин, физостигмин, галантамин);

4. действие через специфические рецепторы – взаимодействие ЛС с рецепторами (мембранными, цитозольными, ядерными):

— агонисты – действуют подобно медиаторам организма, т.е. стимулирующие активность рецепторов;

— антагонисты – препятствуют взаимодействию с рецептором эндогенных и экзогенных агонистов или блокирующие рецепторы;

— вещества, обладающие одновременно свойствами агониста и антагониста.

Факторы, влияющие на действие лекарств:

1. пол (женщины более чувствительны к ЛС во время беременности);

2. возраст (наиболее чувствительны к ЛС новорождённые, дети младшего возраста, пожилые люди);

3. генетические факторы (исследование влияния генетических факторов на чувствительность организма к лекарственным веществам — основная задача специальной области фармакологии – фармакогенетики);

4. функциональное состояние организма (наличие сопутствующих заболеваний изменяет действие ЛС);

5. суточные ритмы (зависимость фармакологического эффекта от суточного ритма изучает хронофармакология; действие ЛС и их токсичность зависят от суточного и сезонного ритмов);

6. алкоголь и табакокурение (влияют на биотрансформацию ЛС).

188.64.170.220 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

2.5.3. Основные механизмы действия лекарств

Многие лекарства имеют одинаковый механизм действия и, следовательно, могут быть объединены в группы и подгруппы. Количество различных фармакологических групп (подгрупп) ограничивается десятками. Лекарственные препараты и фармгруппы изучаются будущим врачом в институте, но для глубокого понимания фармакологии требуется немало специальных знаний и опыт работы в клинике. Однако и неспециалисту полезно попытаться понять хотя бы общие принципы действия лекарств. Тогда пациент сможет вести более аргументированный диалог с врачом, что повысит эффективность их общения. Давайте попробуем разобраться, что же происходит внутри нас, когда мы принимаем лекарство?

Читать еще:  Таблетки для крови

Под действием лекарств в организме не происходит новых биохимических реакций или физиологических процессов. Большинство лекарств только стимулируют, имитируют, угнетают или полностью блокируют действие внутренних посредников, передающих сигналы между различными органами и системами через биологические субстраты.

Каждое звено механизма обратной связи участвует в регулировании функций клетки и целого организма, а, следовательно, может служить “мишенью” – биологическим субстратом – для лекарственных средств. Из двух участников реакции “лекарство + биологический субстрат” первый обычно хорошо известен, специалисты знают его структуру и свойства. О втором зачастую информация более скудная: хотя последние 10-20 лет интенсивно изучается структура и функции различных биологических субстратов, однако до полной ясности пока еще далеко.

Многие ферменты являются “мишенями” для лекарств. Лекарства могут угнетать или – реже – повышать активность этих ферментов, а также являться для них “ложными” субстратами. Например, угнетающими активность (ингибирующими) ферментов средствами являются ненаркотические анальгетики и нестероидные противовоспалительные средства (глава 3.9), некоторые противоопухолевые препараты (метотрексат), а ложным субстратом – метилдофа. Ингибиторы ангиотензинпревращающего фермента (АПФ) (каптоприл и эналаприл) широко применяются в качестве понижающих артериальное давление (гипотензивных) средств (глава 3.5). Изменяя активность ферментов, лекарства изменяют внутриклеточные процессы и тем самым обеспечивают лечебный эффект.

В основе фармакологического действия лекарств лежит их физико-химическое или химическое взаимодействие с такими “мишенями”. Возможность взаимодействия лекарства с биологическим субстратом зависит в первую очередь от химического строения каждого из них. Последовательность расположения атомов, пространственная конфигурация молекулы, величина и расположение зарядов, подвижность фрагментов молекулы относительно друг друга влияют на прочность связи и, тем самым, на силу и продолжительность фармакологического действия. Молекула лекарственного вещества в большинстве случаев имеет очень маленький размер по сравнению с биологическими субстратами, поэтому она может соединяться только с небольшим фрагментом макромолекулы рецептора. При любой реакции между лекарством и биологическим субстратом образуется химическая связь (смотри главу 1.4).

Из школьного курса химии известно, что связь между двумя различными веществами может быть обратимой или необратимой, временной или прочной. Она образуется благодаря электростатическим и ван-дер-ваальсовым силам, водородным и гидрофобным взаимодействиям. Прочные ковалентные связи между лекарством и биологическим субстратом встречаются редко. Например, некоторые противоопухолевые средства за счет ковалентного взаимодействия “сшивают” соседние спирали ДНК, являющейся в данном случае субстратом, и необратимо повреждают ее, вызывая гибель опухолевой клетки.

Итак, есть сигнальные молекулы (медиаторы, гормоны, эндогенные биологически активные вещества), и есть биологические субстраты, с которыми эти молекулы взаимодействуют. Лекарства, введенные в организм, могут воспроизводить или блокировать эффекты естественных сигнальных молекул, изменяя тем самым функции клеток, тканей, органов и систем органов. Этим определяется фармакологическое действие лекарств (таблица 2.5.1).

Таблица 2.5.1. Основные принципы действия лекарственных средств (ЛС)

Воспроизведение действия (миметический эффект) наблюдается в тех случаях, когда молекула лекарственного вещества и естественная сигнальная молекула очень похожи: имеют высокое соответствие физико-химических свойств и структуры, обеспечивающих одинаковые внутриклеточные изменения. Результатом взаимодействия лекарства с рецептором в этом случае является активация или торможение определенной функции клеток в полном соответствии с действием эндогенной (внутренней) сигнальной молекулы. Подобным образом действуют очень многие аналоги гормонов и медиаторов (глава 3.1, глава 3.2, глава 3.3). Цель создания подобных лекарств – получение препаратов с более выраженным, стабильным и длительным по сравнению с медиатором (адреналин, ацетилхолин, серотонин и другие) действием, а также восполнение дефицита медиатора или гормона и, соответственно, их функций.

Конкурентное действие (блокирующий, литический эффект) встречается часто и присуще лекарствам, которые лишь частично похожи на сигнальную молекулу (например, медиатор). В этом случае лекарство способно связываться с одним из участков рецептора, но оно не вызывает комплекса реакций, сопутствующих действию естественного медиатора. Такое лекарство как бы создает над рецептором защитный экран, препятствуя его взаимодействию с естественным медиатором, гормоном и так далее. Конкурентная борьба за рецептор, называемая антагонизмом (отсюда и название лекарств – антагонисты), позволяет корректировать физиологические и патологические реакции. Подобным образом действуют адрено-, холино- и гистаминолитики (глава 3.2, глава 3.7, глава 3.10).

Следующий тип взаимодействия лекарства с рецептором называют неконкурентным, и в этом случае молекула лекарства связывается с рецепторной макромолекулой не в месте ее взаимодействия с медиатором, а на рядом расположенном участке, то есть действует опосредованно. При этом происходит изменение пространственной структуры рецептора, вызывающее раскрытие или закрытие его для естественного медиатора. В этих случаях рецептор для лекарства и рецептор для медиатора не совпадают, но находятся в одном рецепторном комплексе, и лекарство не вступает в прямое взаимодействие с рецептором. Ярким примером лекарств, действующих по этому типу, являются бензодиазепины – большая группа структурно родственных соединений, обладающих анксиолитическими, снотворными и противосудорожными свойствами (глава 3.1). Соединяясь со специфическими бензодиазепиновыми рецепторами, которые взаимосвязаны с рецепторами гамма-аминомасляной кислоты (ГАМК), лекарственное средство изменяет пространственную конфигурацию ГАМК-рецепторов и увеличивает прочность их связи с субстратом – гамма-аминомасляной кислотой. В результате усиливается тормозящее влияние этого медиатора на центральную нервную систему, чем обеспечивается лечебный эффект препаратов.

Некоторые лекарства способны повышать или понижать синтез естественных регуляторов (медиаторов, гормонов и так далее), влиять на процессы их накопления в клетках или ферментного разрушения. Подробнее такие эффекты будут рассмотрены, в частности, в главе 3.1, посвященной средствам, влияющим на функции центральной нервной системы.

Механизм действия лекарств на молекулярном и клеточном уровнях имеет очень большое значение, но не менее важно знать, на какие физиологические процессы влияет препарат, то есть каковы его эффекты на системном уровне. Возьмем, к примеру, лекарственные средства, снижающие артериальное давление. Один и тот же результат – снижение давления – может быть достигнут разными способами:

Читать еще:  Препараты снимающие спазм сосудов

1) угнетением сосудодвигательного центра (магния сульфат);

2) угнетением передачи возбуждения в вегетативной нервной системе (ганглиоблокаторы);

3) ослаблением работы сердца, уменьшением его ударного и минутного объемов (бета-адреноблокаторы);

6) снижением активности системы ренин-ангиотензин (ингибиторы АПФ, антагонисты ангиотензиновых рецепторов) и другие.

Таким образом, одни и те же фармакологические эффекты (увеличение частоты сокращений сердца, расширение бронхов, устранение боли и так далее) можно получить с помощью нескольких препаратов, имеющих различные механизмы действия.

Сложная капельница при остеохондрозе: состав и механизм действия

Капельное введение лекарственных средств при остеохондрозе шейного, грудного или поясничного отдела позвоночника практикуется нечасто. Основным показанием является период обострения патологии, сопровождающийся сильным болевым синдромом.

Задачи и принцип действия капельниц при остеохондрозе

Получение лекарственных средств пероральным способом при обострении остеохондроза не всегда дает ожидаемый терапевтический эффект. По этой причине медикаменты вводятся внутривенно капельно.

Такой способ обусловлен достижением следующих целей:

  • Поддержание стабильной концентрации медикамента в организме. Капельное введение доставляет средство в кровь постепенно и равномерно, что позволяет поддерживать его необходимый для обеспечения лечебного эффекта уровень в течение продолжительного времени.
  • Оказание экстренной помощи. При необходимости быстро снять боли внутривенное введение средства оказывает стремительное и выраженное действие.

Некоторые лекарственные средства вводятся исключительно внутривенно капельно, поскольку иные варианты не обеспечивают надлежащего лечебного действия.

Показания и противопоказания к применению

Капельное введение усиливает терапевтический эффект лекарственного средства, увеличивая биологическую доступность его составляющих. Показанием к постановке капельниц становятся:

  • необходимость поддержания стабильной концентрации препарата в крови;
  • оказание экстренной помощи.

Данная форма введения лекарства имеет противопоказания:

  • патологии вен, в частности, тромбофлебит;
  • заболевания кожи гнойного характера, воспаления подкожной жировой клетчатки в зоне введения средства/установки катетера;
  • отек легочных тканей;
  • плохо компенсированные заболевания сердца и сосудов;
  • отеки на фоне тяжелой почечной недостаточности;
  • отек головного мозга.

От использования капельниц с анальгезирующими средствами необходимо отказаться при патологиях систем кровообращения и кроветворения.

Виды капельниц и особенности лечения

Капельницы могут содержать разные лекарственные средства. Чаще всего в процессе лечения остеохондроза разных отделов позвоночника используются:

  • Эуфиллин;
  • Дексаметазон;
  • смесь Гречко;
  • смесь Петрова;
  • Трентал.

Капельницы также могут иметь сложный состав.

Эуфиллин

Препарат способствует снятию мышечных спазмов, оказывая также обезболивающее действие. Смесь для капельницы готовится из следующего расчета: 10 – 20 мл эуфиллина на 100 – 150 мл изотонического раствора гидрохлорида натрия.

Скорость введения средства – 30 – 50 капель в минуту. Длительность лечения определяется индивидуально.

Капельницы с Эуфиллином при остеохондрозе запрещается ставить при наличии следующих патологий:

  • высокое/низкое артериальное давление;
  • заболевание сердца;
  • эпилепсия;
  • отек легочных тканей;
  • тиреотоксикоз;
  • плохая работа почек/печени;
  • предрасположенность к кровотечениям.

От лечения придется отказаться, если у человека есть аллергия на Эуфиллин.

Дексаметазон

Дексаметазон относится к группе гормональных препаратов из группы кортикостероидов. Оказывает выраженное противовоспалительное действие, устраняя локальное воспаление и снимая боли.

Дозировка средства подбирается индивидуально. Дексаметазон используется внутривенно капельно при обострении остеохондроза для купирования болевого синдрома не более трех дней.

Капельницы со сложным составом

Для усиления лечебного эффекта врач может использовать несколько препаратов одновременно. Состав сложной капельницы при сильных болях при остеохондрозе, например, при прострелах в области шеи и плечевого пояса, может включать следующие препараты:

  • Раствор Анальгина/Баралгина/Новокаина + Гидрокортизон/Эуфиллин/Лазикс +витамин В12 + любой транквилизатор.
  • Баралгин + Реланиум/Декаметазон/Новокаин + раствор глюкозы.
  • Раствор Анальгина (50%) + раствор Но-Шпы (2%) + Реопирин.
  • Раствор Анальгина (50%) + Но-Шпа/Лазикс + Новокаин (25%) + физраствор.

Сочетание лекарственных средств может быть разным и зависит от текущей симптоматики остеохондроза.

Смесь Гречко

Смесь лекарственных средств предназначена для внутривенного капельного введения. В своем классическом составе смесь Гречко при остеохондрозе включает:

  • Димедрол (2 мл);
  • Анальгин (2 мл);
  • Новокаин (2 мл);
  • витамин В 12 (1 мл).

Новокаин или витамин при непереносимости разрешается заменить. В качестве альтернативы могут выступать:

  • Папаверин вместо Новокаина;
  • витамин В12 – микс витамина В1 + Прозерпин.

Полученную лекарственную смесь разводят в 400 мл физраствора. Обезболивающее действие сохраняется от 3-х до 5-и часов. Продолжительность курса – не больше 5 капельниц.

Смесь Петрова представляет собой гиперосмотическое средство, применяемое при обезвоживании организма. В капельницы при остеохондрозе включается при развитии инфекционного воспалительного процесса.

Трентал

Активным действующим веществом препарата выступает пентоксифиллин. Это органическое соединение, в составе которого присутствуют атомы азота.

Использование Трентала улучшает кровообращение и восстанавливает питание воспаленных межпозвоночных дисков, разделяющих суставы позвоночника. Эффект достигается за счет способности средства предупреждать образование тромбов в просвете кровеносного русла, а также улучшает показатели текучести крови. Трентал также способствует расслаблению стенок сосудов, увеличивая их просвет. Итогом воздействия становится улучшение трофики тканей и снятие воспалительного процесса.

Трентал имеет ряд противопоказаний к применению:

  • геморрагическая форма инсульта;
  • кровоизлияние в ткани сетчатки глаза;
  • недавно перенесенный инфаркт миокарда;

Препарат хорошо переносится. Побочные эффекты развиваются редко. Это могут быть:

  • аллергия;
  • нарушения сна;
  • боли за грудиной;
  • приступы тошноты и рвоты;
  • местные и внутренние кровоизлияния.

По отзывам, препарат хорошо справляется с проявлениями остеохондроза, побочка возникает в исключительных случаях.

Побочные эффекты

Используемые в составе капельниц препараты могут вызывать развитии побочных симптомов. Как правило, они зависят от типа лекарственного средства. Можно выделить ряд общих возможных негативных проявлений:

  • головокружения;
  • приступы аритмии;
  • резкие скачки показателей артериального давления;
  • сонливость;
  • нарушение сознания;
  • приступы тошноты, рвоты.

К тяжелым побочным эффектам относятся развитие инсульта, вызванное резким повышением показателей АД, отек мозга и легких на фоне повышенной проницаемости артерий.

При нарушении правил вливания раствора также не исключено развитие побочной симптоматики. Чаще всего она проявляется в виде аллергической реакции: кожных высыпаний, зуда, отечности, флебитов.

Механизмы действия лекарственных средств

Цель данной статьи состоит в том, чтобы объяснить механизмы действия лекарств путем объединения эффектов, производимых ими на молекулярном, клеточном, тканевом и системном уровнях биологического организма. Основное внимание уделено действию на молекулярном и клеточном уровнях, а специфические действия лекарств на ткани и системы организма рассматриваются в Тканевое и системное действие лекарств.

Лекарственные средства действуют на четырех разных уровнях:

  • молекулярном, на котором белковые молекулы являются непосредственными мишенями для большинства лекарств. Эффекты на данном уровне определяют действие лекарств на следующем уровне;
  • клеточном, на котором биохимические и другие компоненты клетки участвуют в процессах трансдукции;
  • тканевом, на котором происходит изменение функций сердца, кожи, легких и др.;
  • системном, на котором происходит изменение функций сердечно-сосудистой и нервной систем, желудочно-кишечного тракта и др.

Для того чтобы понять механизм действия лекарств, необходимо знать, на какие молекулярные мишени действует вещество, природу системы трансдукции (клеточный ответ), типы ткани-мишени и механизмы, посредством которых ткань воздействует на системы организма. Механизмы действия лекарственных веществ нужно рассматривать на каждом из четырех уровней.

В качестве примера можно привести препарат пропранолол — β-адреноблокатор, используемый для лечения некоторых заболеваний, в том числе стенокардии, сердечной недостаточности из-за локальной ишемии (т.е. недостаточного кровотока) в сердце:

  • на молекулярном уровне пропранолол — конкурентный обратимый антагонист адреналина и норадреналина за действие на β-адренорецепторы;
  • на клеточном уровне пропранолол предотвращает β-адренозависимое увеличение внутриклеточного циклического аденозинмонофосфата (цАМФ), инициирующего фосфорилирование белков, мобилизацию ионов кальция и окислительный метаболизм;
  • на тканевом уровне пропранолол предотвращает β-адренозависимое увеличение силы и частоты сердечных сокращений, т.е. оказывает отрицательные инотропный и хронотропный эффекты;
  • на системном уровне пропранолол улучшает функцию сердечно-сосудистой системы. Он снижает β-адренозависимый ответ сердца на активность симпатической нервной системы, уменьшая тем самым потребность тканей сердца в кровотоке, что целесообразно при ограниченном притоке крови (например, при ишемии коронарных артерий).

Механизм действия лекарственных средств на четырех уровнях также можно показать на примере рифампицина, хотя этот препарат действует больше на бактерии, чем на ткани человека.

Рифампицин — это эффективный препарат для лечения туберкулеза:

  • на молекулярном уровне рифампицин связывает (и блокирует активность) полимеразы рибонуклеиновой кислоты (РНК) в микобактерии, которая вызывает туберкулез;
  • на клеточном уровне рифампицин ингибирует синтез РНК в микобактерии и таким образом убивает ее;
  • на тканевом уровне рифампицин предотвращает повреждение ткани легких, возникающее вследствие инфекции микобактерии;
  • на системном уровне рифампицин предотвращает недостаточность легочной функции, вызванную инфекцией микобактерии.

Лекарства можно классифицировать, основываясь на молекулярном, клеточном, тканевом и системном типах действия

На молекулярном уровне пропранолол всегда классифицируют как β-адреноблокатор. Но его выявление на клеточном, тканевом и системном уровнях зависит от патологии, для лечения которой его используют (например, стенокардии и гипертензии).

Фармакологическая классификация лекарственных средств включает виды оказываемых ими эффектов

Безусловно, важно классифицировать лекарства на основе как места их действия, так и вида оказываемого ими действия. Фармакология располагает большим запасом терминов для описания действия лекарств, которые будут представлены далее. Здесь же приводится краткое обсуждение классификации лекарств.

Термины, используемые для описания раличных типов фармакологического действия, зачастую составляют пары: «ингибитор» и «активатор», «антагонист» и «агонист», «депрессант» и «экситант», «прямой» и «непрямой». В этих примерах каждый термин из пары является антонимом другому. Такие термины помогают классифицировать тип фармакологического действия, оказываемого лекарством, но сами по себе малоинформативны (более того, часто эти термины используют неуместно):

  • термин «ингибитор» используют для определения средств, предотвращающих или уменьшающих физиологическую, биохимическую или фармакологическую активность. Ингибирование может происходить на уровне ферментов, нервной или гормональной системы, рецепторов, ионных каналов, клеточных мембран, а также отдельных органов и целого организма;
  • термин «активатор» противоположен по значению термину «ингибитор».

Таким образом, практически любое лекарство может быть рассмотрено либо как ингибитор, либо как активатор. Недостатком является то, что ингибитор в одном случае может выступать активатором в другом, например при стимулировании одного центра путем ингибирования другого.

Термины «антагонист» и «агонист» связаны тем, что антагонист препятствует агонисту осуществлять свое действие, в то время как агонисты — это вещества, производящие эффект. Если термины используют корректно, то и агонист, и антагонист должны воздействовать на один и тот же рецептор. Однако иногда термин «антагонист» используют неточно. Например, антагонистами кальция называют препараты, блокирующие Са2+-каналы.

Термины «супрессор» и «экситант» менее точные и определяют средства, которые, соответственно, уменьшают и увеличивают активность систем организма, в частности центральной нервной системы (ЦНС).

Некоторые лекарственные средства оказывают эффект в результате прямого действия на определенные ткани, в то время как другие — вследствие непрямого, или опосредованного, действия. Например, лекарства могут расслаблять гладкие мышцы сосудов путем прямого действия на мышцы или вторично — за счет высвобождения релаксантов прямого действия или ингибируя высвобождение и действие сократительных субстанций. В качестве других примеров можно привести отрицательное действие β-блокаторов (например, пропранолола) на сократимость сердца, который уменьшает действие симпатической системы на сердце. Амины (симпатомиметики) непосредственно учащают сокращения сердца путем действия на клетки водителя ритма, контролирующие частоту сокращений,в то время как атропин может ускорять сердечный ритм: как антагонист мускариновых рецепторов, он уменьшает действие парасимпатических нервов (через выход ацетилхолина) на сердце.

Ответ на действие лекарств проявляется на молекулярном, клеточном, тканевом и системном уровнях

Поскольку механизм действия лекарств проявляется на любом из четырех уровней, ответ на действие лекарств может быть определен таким же образом (табл. 2.1). Средства, которые активируют свои молекулярные мишени, называют агонистами или активаторами (точный термин зависит от природы молекулы-мишени). Средства, которые блокируют либо тормозят действие агонистов (активаторов) или инактивируют молекулу-мишень, называют антагонистами, блокаторами либо ингибиторами. Последние не обладают прямым действием на клеточном, тканевом и системном уровнях, но могут блокировать молекулярный ответ на действие эндогенных или экзогенных агонистов (активаторов).

Таблица 2.1 Четыре уровня воздействия лекарств

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector